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Abstract. Lovász and Schrijver [9] have constructed semidefinite relax-
ations for the stable set polytope of a graph G = (V, E) by a sequence
of lift-and-project operations; their procedure finds the stable set poly-
tope in at most α(G) steps, where α(G) is the stability number of G.
Two other hierarchies of semidefinite bounds for the stability number
have been proposed by Lasserre [4],[5] and by de Klerk and Pasechnik
[3], which are based on relaxing nonnegativity of a polynomial by requir-
ing the existence of a sum of squares decomposition. The hierarchy of
Lasserre is known to converge in α(G) steps as it refines the hierarchy of
Lovász and Schrijver, and de Klerk and Pasechnik conjecture that their
hierarchy also finds the stability number after α(G) steps. We prove this
conjecture for graphs with stability number at most 8 and we show that
the hierarchy of Lasserre refines the hierarchy of de Klerk and Pasechnik.

1 Introduction

Semidefinite programming plays an essential role for constructing good relax-
ations for hard combinatorial optimization problems, in particular, for the max-
imum stable set problem which will be considered in the present paper. Lovász
[8] introduced the theta number ϑ(G) as an upper bound for the stability number
α(G) of a graph G; ϑ(G) can be computed efficiently (to any arbitrary precision)
using semidefinite programming and it coincides with α(G) when G is a perfect
graph. Lovász and Schrijver [9] construct a hierarchy of semidefinite relaxations
for the stable set polytope of G by a sequence of lift-and-project operations; their
procedure is finite and it finds the stable set polytope in at most α(G) steps.

Two other hierarchies of semidefinite bounds for the stability number have
been proposed by Lasserre [4, 5] and by de Klerk and Pasechnik [3]. They are
based on the following paradigm: While testing nonnegativity of a polynomial
is a hard problem, one can test efficiently whether a polynomial can be written
as a sum of squares of polynomials via semidefinite programming. As was al-
ready proved by Hilbert in 1888 not every nonnegative multivariate polynomial
can be written as a sum of squares (see Reznick [14] for a nice survey on this

� Supported by the Netherlands Organization for Scientific Research grant NWO
639.032.203.

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 136–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Semidefinite Bounds for the Stability Number of a Graph 137

topic). However, some representation theorems have been proved ensuring the
existence of certain sums of squares decompositions under some assumption, like
positivity of the polynomial on a compact basic closed semi-algebraic set (see,
e.g., [18] for an exposition of such results). An early such result is due to Pólya
[13] who showed that, if p(x) is a homogeneous polynomial which is positive
on R

n
+ \ {0}, then (

∑n
i=1 xi)rp(x) has only nonnegative coefficients (and thus

(
∑n

i=1 x2
i )

rp(x2
1, . . . , x

2
n) is a sum of squares) for some sufficiently large integer

r.
The starting point for Lasserre’s construction is that the stability number

α(G) of a graph G = (V,E) can be expressed as the smallest scalar t for which
the polynomial t − ∑

i∈V xi is nonnegative on the set {x ∈ R
V | xixj = 0 (ij ∈

E), x2
i = xi (i ∈ V )}. Requiring the weaker condition that the polynomial

t − ∑
i∈V xi can be written as a sum of squares modulo the ideal generated by

xixj (ij ∈ E) and x2
i − xi (i ∈ V ) with given degree bounds, yields a hierarchy

of semidefinite upper bounds for α(G). The dual approach (in terms of moment
matrices) yields the hierarchy of Lasserre [4, 5] of semidefinite relaxations for the
stable set polytope. This hierarchy refines the hierarchy of Lovász and Schrijver
(see [6]) and thus it also finds the stable set polytope in α(G) steps.

By a result of Motzkin and Straus [11], one may alternatively express α(G) as
the smallest scalar t for which the matrix M := t(I +AG)−J (with entries t−1
on the diagonal and at positions corresponding to edges and −1 elsewhere) is
copositive, meaning that the polynomial pM (x) :=

∑
i,j∈V x2

i x
2
jMij is nonnega-

tive on R
n. Following Parrilo [12], de Klerk and Pasechnik [3] propose to relax the

nonnegativity condition on pM (x) and to require instead that (
∑

i∈V x2
i )

rpM (x)
be a sum of squares for some integer r ≥ 0. The convergence of these bounds to
α(G) is guaranteed by the above mentioned result of Pólya. The first bound in
the hierarchy coincides with the strengthening ϑ′(G) of the theta number intro-
duced by McEliece, Rodemich and Rumsey [10] and Schrijver [16]. It is however
not clear how the next bounds relate to the bounds provided by the construction
of Lasserre. It is conjectured in [3] that the stability number is found after α(G)
steps. In this paper we study this conjecture and develop a proof technique which
enables us to show that the conjecture holds for graphs with stability number at
most 8. Moreover, we show that the hierarchy of bounds of Lasserre (enhanced
by adding some nonnegativity constraint) refines the hierarchy of bounds of de
Klerk and Pasechnik, answering another open question of [3].

The paper is organized as follows. In Section 2, we first recall some definitions
and results related to the hierarchies of bounds of Lasserre and of de Klerk and
Pasechnik. Then we introduce a dual formulation for the latter bounds, which
will enable us to compare the two hierarchies of bounds, and we present our main
results. The proofs are delayed till Section 3, where we prove the conjecture for
graphs with stability number at most 8, and till Section 4, where we prove the
relation between the two hierarchies.

Throughout, G = (V,E) denotes a graph with node set V = {1, . . . , n}. Let
α(G) denote its stability number, i.e., the largest cardinality of a stable set in
G, and let AG denote the adjacency matrix of G, i.e., AG is the 0/1 matrix
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indexed by V whose (i, j)-th entry is 1 when i, j ∈ V are connected by an
edge. All matrices are assumed to be symmetric and I, J , e, ei (i = 1, . . . , n)
denote, respectively, the identity matrix, the all-ones matrix, the all-ones vector,
and the standard unit vectors of suitable sizes. A matrix M is copositive if
xT Mx ≥ 0 for all x ∈ R

n
+ and Cn denotes the copositive cone, consisting of

the n × n copositive matrices. For a symmetric matrix M , we write M � 0
if M is positive semidefinite. For a sequence β ∈ Z

n
+, we set |β| :=

∑n
i=1 βi,

β! := β1! · · ·βn!, S(β) := {i | βi �= 0}, and Sodd(β) := {i | βi is odd}. One says
that β is even when Sodd(β) = ∅. Finally, set I(n, r) := {β ∈ Z

n
+ | |β| = r} and

Pr(V ) := {I ⊆ V | |I| ≤ r}.

2 Semidefinite Bounds for the Stability Number

2.1 The Semidefinite Bounds of Lasserre

Given an integer r ≥ 1 and a vector x = (xI)I∈P2r(V ), consider the matrix:

Mr(x) := (xI∪J )I,J∈Pr(V )

known as the moment matrix of x of order r. By setting:

las(r)(G) := max
∑

i∈V xi s.t. Mr(x) � 0, xI ≥ 0 (I ⊆ V, |I| = r + 1),
x∅ = 1, xij = 0 (ij ∈ E)

(1)

one obtains a hierarchy of semidefinite bounds for the stability number, known
as Lasserre’s hierarchy [5, 6]. Indeed, if S is a stable set, the vector x ∈ R

P2r(V )

with xI = 1 if I ⊆ S and xI = 0 otherwise, is feasible for (1) with objective
value |S|, showing α(G) ≤ las(r)(G). We note that las(1)(G) = ϑ′(G). For fixed
r, the parameter las(r)(G) can be computed in polynomial time (to an arbitrary
precision) since the semidefinite program (1) involves matrices of size O(nr) with
O(n2r) variables.

Equality α(G) = las(r)(G) holds for r ≥ α(G). This result remains valid if we
remove the nonnegativity constraint: xI ≥ 0 (|I| = r + 1) in (1) ([6]). However,
with this nonnegativity condition, we will be able to compare the hierarchies of
Lasserre and de Klerk and Pasechnik (see Theorem 3 below).

2.2 The Semidefinite Bounds of de Klerk and Pasechnik

The starting point in [3] is the following formulation for α(G) found by Motzkin
and Straus [11]:

1
α(G)

= min xT (I + AG)x subject to x ≥ 0,
n∑

i=1

xi = 1.

In other words,

α(G) = min t subject to t(I + AG) − J ∈ Cn. (2)
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Therefore, upper bounds for α(G) can be obtained by replacing in program (2)
the copositive cone Cn by a smaller subcone of it. Following [12], given an integer
r ≥ 0, K(r)

n is the cone of n × n matrices M for which the polynomial

p
(r)
M (x) :=

(
n∑

i=1

x2
i

)r
⎛

⎝
n∑

i,j=1

Mijx
2
i x

2
j

⎞

⎠ (3)

can be written as a sum of squares of polynomials. Parrilo [12] shows that

K(0)
n = {P + N | P � 0, N ≥ 0}. (4)

A characterization of K(1)
n can be found in [12, 1]. Obviously, K(r)

n ⊆ K(r+1)
n ⊆

. . . ⊆ Cn. The result of Pólya mentioned in the Introduction shows that the
interior of the cone Cn is equal to

⋃
r≥0 K(r)

n . Setting

ϑ(r)(G) := min t subject to t(I + AG) − J ∈ K(r)
n , (5)

one obtains a hierarchy of upper bounds for α(G). The first bound ϑ(0)(G) is
equal to

ϑ′(G) = max Tr(JX) s.t. Tr(X) = 1, Xij = 0 (ij ∈ E), X � 0, X ≥ 0 (6)

(see [3]). Thus, ϑ(0)(G) ≤ ϑ(G), since program (6) without the nonnegativity
condition is a formulation of the theta number.

The problem of finding a sum of squares decomposition for a polynomial of
degree 2d can be formulated as a semidefinite program involving matrices of
size O(nd) and O(n2d) variables (see, e.g., [12]). Therefore, for fixed r, program
(5) can be reformulated as a semidefinite program of polynomial size and thus
ϑ(r)(G) can be computed in polynomial time (to any precision).

De Klerk and Pasechnik [3] show that

α(G) = �ϑ(r)(G)	 for r ≥ α(G)2.

Indeed the matrix M := α(1 + ε)(I + AG) − J with α = α(G) and ε = α−1
α2−α+1 ,

belongs to the cone K(r)
n since all the coefficients of the polynomial p

(r)
M (x) are

nonnegative; this implies that α(G) ≤ ϑ(r)(G) ≤ α(G)(1 + ε) < α(G) + 1.
Let us observe that, for the matrix M := α(I + AG) − J , the polynomial

p
(r)
M (x) has a negative coefficient for any r ≥ 0 when α = α(G) ≥ 2. To see it,

recall from [1] that

p
(r)
M (x) =

∑

β∈I(n,r+2)

r!
β!

cβx2β , where cβ := βT Mβ − βT diag(M). (7)

If S(β) is a stable set, then cβ = α
∑

i βi(βi−1)−(r+1)(r+2). Write r+2 = qα+s
with q, s ∈ Z+, 0 ≤ s < α; then cβ < 0 for β = (q + 1, . . . , q + 1, q, . . . , q, 0, . . . 0)
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with s entries equal to q + 1, α − s entries equal to q, and S(β) being a stable
set.

It is also shown in [3] that

ϑ(1)(G) ≤ 1 + max
i∈V

ϑ(0)(G\i⊥) (8)

where, for i ∈ V , G\i⊥ is the graph obtained from G by deleting i and its
neighbours. Therefore, ϑ(1)(G) = α(G) when α(G) ≤ 2. More generally, de
Klerk and Pasechnik [3] conjecture:

Conjecture 1. ϑ(r)(G) = α(G) for r ≥ α(G) − 1.

2.3 Dual Formulation

Using conic duality, the bound ϑ(r)(G) from (5) can be reformulated as

ϑ(r)(G) = max Tr(JX) subject to Tr((I + AG)X) = 1, X ∈ (K(r)
n )∗. (9)

As the programs (5) and (9) are strictly feasible, there is no duality gap and
the optima in (5) and (9) are indeed attained ([3]). For r = 0, it follows from
(4) that (K(0)

n )∗ is the cone of completely positive (i.e., positive semidefinite and
nonnegative) matrices. For r ≥ 1, one can give an explicit description of the dual
cone (K(r)

n )∗ in terms of moment matrices.

Definition 1. Let y = (yδ)δ∈I(n,2r+4) be given.

(i) Define the matrix Nr+2(y) indexed by I(n, r + 2), whose (β, β′)-th entry is
equal to yβ+β′ , for β, β′ ∈ I(n, r + 2).

(ii) For γ ∈ I(n, r), Nγ(y) denotes the principal submatrix of Nr+2(y) indexed
by γ +2e1, . . . , γ +2en; that is, Nγ(y) is the n×n matrix with (i, j)-th entry
y2γ+2ei+2ej

, for i, j = 1, . . . , n.
(iii) Define the n × n matrix

C(y) :=
∑

γ∈I(n,r)

r!
γ!

Nγ(y). (10)

Definition 2. Define the cone

C(r)
n := {Z ∈ R

n×n | Z = C(y) for some y ∈ R
I(n,2r+4) with Nr+2(y) � 0}.

As the matrix C(y) in (10) involves only entries of y indexed by even sequences,
one can assume w.l.o.g. in the definition of the cone C(r)

n that yδ = 0 whenever
δ has an odd component.

Lemma 1. The cones K(r)
n and C(r)

n are dual of each other; i.e., C(r)
n = (K(r)

n )∗

and K(r)
n = (C(r)

n )∗.
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Proof. For a polynomial p(x) =
∑

δ pδx
δ, let p := (pδ)δ denote the vector of its

coefficients. The following can be easily verified:

yT v = uT (Nr+2(y))u for y ∈ R
I(n,2r+4), u ∈ R

I(n,r+2), v(x) := u(x)2. (11)

Consider the cones C := {y ∈ R
I(n,2r+4) | Nr+2(y) � 0}, D := {p ∈ R

I(n,2r+4) |
the polynomial p(x) is a sum of squares}. Then, C = D∗ as a direct application
of (11), which implies D = C∗ since D is a closed cone (see [15]). Using (7), one
can also easily verify that

Tr(MC(y)) = yT (p(r)
M ) for y ∈ R

I(n,2r+4), M symmetric n × n matrix (12)

where p
(r)
M (x) is the polynomial from (3). We can now prove the lemma. As

C(r)
n is a closed cone, it suffices to show: K(r)

n = (C(r)
n )∗. The inclusion K(r)

n ⊆
(C(r)

n )∗ follows using (11) and (12). Conversely, let M ∈ (C(r)
n )∗. Then, by (12),

yT (p(r)
M ) ≥ 0 for all y ∈ C; that is, p

(r)
M ∈ C∗ = D, showing that M ∈ K(r)

n . 
�
Consider the program

ϑ̃(r)(G) := max Tr(X) s.t. X ∈ C(r)
n = (K(r)

n )∗, Tr(AGX) = 0,
X − diag(X)diag(X)T � 0.

(13)

Then,
α(G) ≤ ϑ̃(r)(G) ≤ ϑ(r)(G). (14)

Indeed, if X is feasible for (13), then X ′ := X
Tr(X) is feasible for (9) with

Tr(JX ′) ≥ Tr(X), which shows ϑ̃(r)(G) ≤ ϑ(r)(G). Given a stable set S with
incidence vector x := χS , define the vector y ∈ R

I(n,2r+4) with yδ = 1
|S|r if δ is

even and S(δ) ⊆ S, and yδ = 0 otherwise. Then, Nr+2(y) � 0; X := C(y) = xxT

is feasible for (13) with Tr(X) = |S|, which shows α(G) ≤ ϑ̃(r)(G).

2.4 The Main Results

Our main results are the following:

Theorem 1. For a graph G and a positive integer r ≤ min(α(G) − 1, 6),

ϑ(r)(G) ≤ r + max
S⊆V stable, |S|=r

ϑ(0)(G\S⊥), (15)

where S⊥ denotes the set of nodes that belong to S or are adjacent to a node
in S.

Theorem 2. Conjecture 1 holds for α(G) ≤ 8; that is,

ϑ(α(G)−1)(G) = α(G) if α(G) ≤ 8.

Theorem 3. For r ≥ 1, the parameters from (1),(9) and (13) satisfy:

las(r)(G) ≤ ϑ̃(r−1)(G) ≤ ϑ(r−1)(G). (16)
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Theorem 2 follows directly from Theorem 1 when α(G) ≤ 7 and from its proof
technique when α(G) = 8. Our proof technique does not apply to the case when
α(G) ≥ 9. It is quite more complicated than the proof of convergence in α(G)
steps for the Lovász-Schrijver and the Lasserre semidefinite hierarchies. One of
the main difficulties (as pointed out later in the proof) comes from the fact that,
for r ≥ 1, the cone K(r)

n is not invariant under some simple matrix operations,
like extending a matrix by adding a zero row and column to it, or rescaling
it by positive multipliers (which obviously preserve copositivity and positive
semidefiniteness). For instance, when G is a circuit of length 5, the matrix M :=
2(I + AG) − J belongs to K(1)

5 , but adding a zero row and column yields a
matrix that does not belong to K(1)

6 . We thank E. de Klerk for communicating
this example to us.

As Theorem 3 shows, the bound las(r)(G) is at least as good as ϑ̃(r−1)(G).
There exist in fact graphs for which strict inequality: las(2)(G) < ϑ̃(1)(G) holds.
For this, given integers 2 ≤ d ≤ n, consider the graph G(n, d) with node set
P(V ) (|V | = n) where I, J ∈ P(V ) are connected by an edge if |I∆J | ∈
{1, . . . , d − 1}. Then α(G(n, d)) is the maximum cardinality of a binary code
of word length n with minimum distance d. Delsarte [2] introduced a linear pro-
gramming bound which coincides with the parameter ϑ′(G(n, d)) ([16]). Schrijver
[17] introduced a stronger semidefinite bound which roughly1 lies between the
bounds las(1)(G(n, d)) and las(2)(G(n, d)) ([7]). While G(n, d) has 2n vertices,
Schrijver’s bound can be computed via a semidefinite program of size O(n3)
(using a block-diagonalization of the underlying Terwiliger algebra). It turns
out that the same algebraic property holds for the bound ϑ(1)(G(n, d)); thus
we could compute this bound as well as Schrijver’s bound for the parameters
(n, d) = (17, 4), (17, 6), (17, 8), and we found:

las(2)(G(17, 4)) ≤ 3276 < 3607 ≤ ϑ(1)(G(17, 4))
las(2)(G(17, 6)) ≤ 352 < 395 ≤ ϑ(1)(G(17, 6))
las(2)(G(17, 8)) ≤ 41 < 42 ≤ ϑ(1)(G(17, 8)).

3 Proofs of Theorems 1 and 2

Let G = (V,E) be a graph with stability number α(G), V = {1, . . . , n} and
1 ≤ r ≤ α(G) − 1 an integer. Set

t := r + max
S⊆V stable,|S|=r

ϑ(0)(G\S⊥).

Then, t ≥ r + 1. By assumption,

(t − r)(I + AG\S⊥) − J ∈ K(0)

n−|S⊥| for any stable set S in G of size r. (17)

1 Indeed, the formulation of Schrijver’s bound has an additional constraint, namely,
xijk ≤ xij for all i, j, k ∈ V , which does not appear in the definition of the bound
las(r)(G) used in the present paper.
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In order to prove Theorem 1, we have to show that, for 1 ≤ r ≤ min(α(G)−1, 6),

M := t(I + AG) − J ∈ K(r)
n . (18)

We need some notation. For two nodes u, v ∈ V , write u � v if u = v or
uv ∈ E, and u �� v otherwise. For x ∈ R

n, set v(x) := (x2
i )

n
i=1. Let B be an m×n

matrix. We say that B is a q×s block matrix if the set {1, . . . ,m} indexing its rows
can be partitioned into Q1 ∪ . . .∪Qq and the set {1, . . . , n} indexing its columns
can be partitioned into S1 ∪ . . . ∪ Ss in such a way that, for any h ∈ {1, . . . , q},
h′ ∈ {1, . . . , s}, the entries Bij for i ∈ Qh, j ∈ Sh′ are all equal to the same value,
say b̃hh′ . In other words, B is obtained from the matrix B̃ := (b̃hh′) h∈{1,...,q}

h′∈{1,...,s}
by

suitably duplicating rows and columns. Obviously, B � 0 if and only if B̃ � 0.
We call B̃ the skeleton of the block matrix B.

The following observation plays a central role in the proof.

Lemma 2. Let X(i) (i ∈ V ) be symmetric matrices satisfying the condition:

X(i)jk + X(j)ik + X(k)ij ≥ 0 for all i, j, k ∈ V, (19)

then the polynomial
∑

i∈V x2
i v(x)T X(i)v(x) =

∑
i,j,k∈V x2

i x
2
jx

2
kX(i)jk is a sum

of squares.

Proof. The polynomial
∑

i,j,k∈V x2
i x

2
jx

2
kX(i)jk is equal to

∑
(i,j,k)∈V 3
i�=j �=k �=i

x2
i x

2
jx

2
k[X(i)jk + X(i)jk + X(i)jk]

+
∑

(i,j)∈V 2
i�=j

x2
i x

4
j [X(i)jj + 2X(j)ij ] +

∑
i∈V x6

i X(i)ii,

which is a sum of squares, since all coefficients are nonnegative by (19). 
�

Our strategy will be to construct matrices X({i1, ..., ik}, i) (i ∈ V ) satisfying
(19) when {i1, ..., ik} is a stable set of size k ≤ r. We will use them to recursively
decompose M into M −X(i1)−X(i1, i2)− . . .−X(i1, . . . , ik) in such way that
at the last level k = r we obtain matrices in K(0)

n .

3.1 Defining Sets of Matrices Satisfying the Linear Condition (19)

Let S be a stable set of cardinality k, 0 ≤ k ≤ r. We define a set of matrices
X(S, i) (for i ∈ V ) indexed by V that satisfy the condition (19). Set m0 := 1
and mk := tk

(t−1)···(t−k) for k = 1, . . . , r. (Then, t ≥ r + 1 > k.)
For i ∈ S⊥, X(S, i) is the symmetric matrix whose entry at position (u, v) is

defined as follows:

mk times

⎧
⎨

⎩

0 if u or v ∈ S⊥

t − k − 1 if u, v ∈ V \ S⊥ and u � v
−1 if u, v ∈ V \ S⊥ and u �� v.
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For i �∈ S⊥, X(S, i) is the symmetric matrix whose entry at position (u, v) is
defined as follows:

mk times

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if u, v ∈ S⊥

− t−k−1
2 if u ∈ S⊥, v ∈ i⊥ \ S⊥

1
2 if u ∈ S⊥, v ∈ V \ (S⊥ ∪ i⊥)
0 if u, v ∈ i⊥ \ S⊥ and u � v
−(t − k) if u, v ∈ i⊥ \ S⊥ and u �� v
t − k

2 if u ∈ i⊥ \ S⊥, v ∈ V \ (S⊥ ∪ i⊥) and u � v
k
2 if u ∈ i⊥ \ S⊥, v ∈ V \ (S⊥ ∪ i⊥) and u �� v
−k if u, v ∈ V \ (S⊥ ∪ i⊥) and u � v
0 if u, v ∈ V \ (S⊥ ∪ i⊥) and u �� v.

If S = {i1, . . . , ik}, we also denote X(S, i) as X(i1, . . . , ik, i). When S = ∅, we
set X(∅, i) =: X(i). Given an ordering (S) = (i1, . . . , ik) of the elements of S,
define the matrix

M((S)) := M − X(i1) − X(i1, i2) − . . . − X(i1, . . . , ik). (20)

Lemma 3. Given a stable set S of size 0 ≤ k ≤ r, the matrices X(S, i) (i ∈ V )
satisfy (19).

Proof. Direct verification. 
�

3.2 The Role of the Matrices X(S, i) and M((S)) in the Proof

Our objective is to prove that the matrix M from (18) belongs to the cone K(r)
n ,

i.e., that the polynomial p
(r)
M (x) = σ(x)rv(x)T Mv(x) is a sum of squares, setting

σ(x) :=
∑n

i=1 x2
i . The basic idea is to decompose p

(r)
M (x) as

σ(x)r−1
n∑

i=1

x2
i v(x)T (M − X(i))v(x) + σ(x)r−1

n∑

i=1

x2
i v(x)T X(i)v(x). (21)

The second sum is a sum of squares by Lemmas 2 and 3. Each matrix M −X(i)
can be written as

M − X(i) =
(

i⊥ V \ i⊥

i⊥ (t − 1)J −J
V \ i⊥ −J t(I + AG\i⊥) − J

)

(22)

=
t

t − 1

(
0 0
0 (t − 1)(I + AG\i⊥) − J

)

+
(

(t − 1)J −J
−J 1

t−1J

)

. (23)

When r = 1, (22),(23) together with assumption (17) imply that M−X(i) ∈ K(0)
n

and thus p
(1)
M (x) is a sum of squares; therefore, (8) holds. Assume now r ≥ 2.

The last matrix in (23) is positive semidefinite. Suppose our assumption would
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be that (t − 1)(I − AG\i⊥) − J ∈ K(r−1)

n−|i⊥|, then it would be tempting to con-

clude from (22) and (23) that M −X(i) ∈ K(r−1)
n (which would then imply that

M ∈ K(r)
n and thus conclude the proof). This would be correct if we would work

with cones of matrices which are closed under adding a zero row and column,
but this is not the case for the cones K(r) and thus this argument does not
work. To go around this difficulty, we further decompose the first sum in (21)
by developing σ(x)r−1 as σ(x)r−2

∑n
j=1 x2

j and using the matrices X(i, j). Gen-
erally, one can write the following ‘inclusion-exclusion’ formula for the matrix
σ(x)rM :

σ(x)rM =
r∑

h=1

σ(x)r−h
∑

i1∈V, i2 �∈i⊥1 ,...,ih−1 �∈i⊥1 ∪...∪i⊥
h−2

ih∈V

x2
i1 · · ·x2

ih
X(i1, . . . , ih)

+
r∑

h=2

σ(x)r−h
∑

i1∈V, i2 �∈i⊥1 ,...,ih−1 �∈i⊥1 ∪...∪i⊥
h−2

ih∈i⊥1 ∪...∪i⊥
h−1

x2
i1 · · ·x2

ih
M((i1, . . . , ih))

+
∑

i1∈V, i2 �∈i⊥1 ,...,ir−1 �∈i⊥1 ∪...∪i⊥
r−2

ir �∈i⊥1 ∪...∪i⊥
r−1

x2
i1 · · ·x2

ir
M((i1, . . . , ir)).

(24)
Therefore, in order to show that M ∈ K(r)

n , it suffices to show that

M((i1, . . . , ik, ik+1)) ∈ K(0)
n for S := {i1, . . . , ik} stable,

ik+1 ∈ S⊥, 1 ≤ k ≤ r − 1,
(25)

and
M((i1, . . . , ir)) ∈ K(0)

n for {i1, . . . , ir} stable. (26)

For this we need to study the structure of the matrices M((S)).

3.3 The Structure of the Matrices M((S))

Given an ordered stable set (S) = (i1, i2, ..., ik) with k = 1, . . . , r, consider the
matrix M((S)) from (20) and write

M((S)) :=
(

S⊥ V \ S⊥

S⊥ Ck(S) Dk(S)
V \ S⊥ Dk(S)T Ek(S)

)

. (27)

Lemma 4. The matrix M((S)) from (27) has the following properties.

(i) Ck(S) is a k × k block matrix whose rows and columns are indexed by the
partition of S⊥ into i⊥1 ∪ (i⊥2 \ i⊥1 ) ∪ . . . ∪ (i⊥k \ {i1, . . . , ik−1}⊥). Let Ck be
the skeleton of Ck(S) (Ck is a k × k matrix) and set dk := Cke ∈ R

k. Then,

eT Cke =
k∑

h=1

dk(h) = (mk − 1)(t − k)2.
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(ii) The matrix Dk(S) is a k × 1 block matrix, with the same partition as above
for the set S⊥ indexing its rows. Given h ∈ {1, . . . , k}, all entries in the
(h, 1)-block take the same value, which is equal to −dk(h)

t−k .
(iii) For u, v ∈ V \S⊥, the (u, v)-th entry of Ek(S) is equal to tmk−1−1 if u � v

and to −1 if u �� v.

Proof. The block structure of the matrices Ck and Dk is determined by the
construction of the matrix M((S)) in (20) and the shape of the matrices X(.)
defined in Section 3.1. We show the lemma by induction on k ≥ 1. For k = 1,
the matrix M((S)) = M − X(i1) has the shape given in (22) and the desired
properties hold. Assume (i),(ii),(iii) hold for a stable set S of size k ≥ 1. Let
i ∈ V \ S⊥. We show that (i),(ii),(iii) hold for the stable set S ∪ {i}. Let D′

k(S)
(resp., D′′

k(S)) be the submatrices of Dk(S) whose columns are indexed by i⊥ \S
(resp., V \ (S ∪ i⊥)) and with the same row indices as Dk(S). Then Ck+1(S, i)
and Dk+1(S, i) have the following block structure:

Ck+1(S, i) =
(

Ck(S) D′
k(S) + t−k−1

2 mkJ

D′
k(S)T + t−k−1

2 mkJT (tmk−1 − 1)J

)

(28)

Dk+1(S, i) =
(

D′′
k(S) − 1

2mkJ

(−1 − mk
k
2 )J

)

, (29)

where J denotes the all-ones matrix of appropriate size. By simple calculation
one can show that Ck+1(S, i) and Dk+1(S, i) satisfy the induction hypothesis.

Finally, the (u, v)-th entry of the matrix Ek+1(S, i) remains the same as in
Ek(S), i.e., equal to −1, if u �� v and, for u � v, it is equal to tmk−1−1+kmk =
(t − k)mk − 1 + kmk = tmk − 1. 
�
Corollary 1. Let S be a stable set of size k = 1, . . . , r. Then,

G((S)) :=
(

Ck(S) Dk(S)
Dk(S)T (mk − 1)J

)

� 0 ⇐⇒ Ck(S) � 0, (30)

M((S)) = G((S)) + mk

(
0 0
0 (t − k)(I + AG\S⊥) − J

)

, (31)

M((S, i)) = G((S)) if i ∈ S⊥. (32)

Proof. By Lemma 4, Ck(S), Dk(S) are block matrices; hence G((S)) � 0 if and

only if its skeleton G :=
(

Ck − 1
t−kCke

− 1
t−keT Ck mk − 1

)

is positive semidefinite. Now,

G � 0 ⇐⇒ Ck � 0 since the last column of G is a linear combination of the first
k columns; thus (30) holds. Relations (31), (32) follow using the definitions. 
�

Therefore, (25), (26) hold (and thus M ∈ K(r)
n ) if we can show that Ck(S) � 0

for any stable set S of size k ≤ r. As Ck(S) is a block matrix, it suffices to show
that its skeleton Ck is positive semidefinite. Moreover, it suffices to show that
Cr � 0 since, in view of (28), the matrices Ck (1 ≤ k ≤ r) are in fact the leading
principal submatrices of Cr.
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3.4 The Matrix Cr Is Positive Semidefinite When
r ≤ min(α(G) − 1, 6)

Recall that the entries of Cr depend on the parameter t; thus one may alterna-
tively write Cr as Cr(t). Our task is now to show that Cr(t) � 0 for all t ≥ r +1
and r ≤ min(α(G) − 1, 6). We achieve this by proving that

det Ck(t) > 0 for t ≥ r + 1, k = 1, . . . , r. (33)

The proof for (33) relies on establishing a recurrence relationship among the
determinants of Ck(t). We need the following lemma.

Lemma 5. Assume Ck+1 is nonsingular. Then,

eT (Ck+1)−1e =
t2

(t − k)2
det Ck

det Ck+1
. (34)

Proof. Write Ck+1 :=
(

Ck x
xT a

)

, (Ck+1)−1 :=
(

A y
yT b

)

. Then,

(a) ACk +yxT = I; (b) Cky+bx = 0; (c) Ax+ay = 0; (d) xT y+ab = 1. (35)

By Lemma 4 and (28), a = tmk−1 − 1 = (t − k)mk − 1 and x = ρke − 1
t−kCke,

setting ρk := mk
t−k−1

2 . Moreover, eT Cke = (mk − 1)(t − k)2, implying

eT x = kρk − (t − k)(mk − 1),
eT x

t − k
+ a = ρk

(
k

t − k
+ 2

)

. (36)

Taking the inner product of relation (c) with the all-ones vector and using (35)(a)
and (36), we find:

0 = eT Ax + aeT y = eT A(ρke − 1
t−kCke) + aeT y

= ρkeT Ae − 1
t−keT (I − yxT )e + aeT y = ρkeT Ae − k

t−k + eT y(xT e
t−k + a)

= ρk(eT Ae + 2eT y) + k
t−k (ρkeT y − 1);

that is,

eT Ae + 2eT y =
k

t − k

(
1
ρk

− eT y

)

. (37)

Using relations (35)(d),(b) and (36), we find:

1 = xT y + ab = (ρke − 1
t−kCke)T y + ab

= ρkeT y + b
t−keT x + ab = ρkeT y + bρk( k

t−k + 2);

that is,

eT y =
1
ρk

− b

(
k

t − k
+ 2

)

. (38)

Relations (37) and (38) imply that eT (Ck+1)−1e = eT Ae + 2eT y + b = b t2

(t−k)2 .

By the cofactor rule, b = det Ck

det Ck+1
, and the lemma follows. 
�
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Corollary 2. Let k ≥ 2 and assume that Ck(t) is nonsingular. Then,

det Ck+1(t) =
2tρk

t − k
det Ck(t) − t2ρ2

k

(t − k + 1)2
det Ck−1(t), (39)

after setting ρk := mk
t−k−1

2 .

Proof. Setting P :=
(

I − 1
t−ke

0 1

)

, we find that PT Ck+1P =
(

Ck ρke
ρkeT µ

)

,

after setting µ := mk
t(t−k−1)

t−k . Set u := (Ck)−1e and let v1, . . . , vk+1 denote the
columns of PT Ck+1P . Then, vk+1 − ρk(

∑k
i=1 uivi) has all zero entries except

the last (k +1)-th entry equal to µ− ρ2
k(

∑k
i=1 ui) = mk

t(t−k−1)
t−k − ρ2

keT (Ck)−1e.
Therefore, we can conclude that

det Ck+1 = det PT Ck+1P =
(

2tρk

t − k
− ρ2

keT (Ck)−1e

)

det Ck. (40)

Relation (39) now follows directly from Lemma 5 and (40). 
�

Lemma 6. Consider the rational functions f1(t) = t − 1, f2(t) := t2(t−2)(3t−2)
4(t−1)2

and, for h = 2, . . . , k,

fh+1(t) =
2tρh

t − h
fh(t) − t2ρ2

h

(t − h + 1)2
fh−1(t),

and the polynomials g1(t) := 1, g2(t) := 3t − 2 and, for h = 2, . . . , k,

gh+1(t) = εh(t − h)gh(t) − t(t − h − 1)gh−1(t),

with εh = 1 if h is even and εh = 4 otherwise. As before, ρh := mh
t−h−1

2 .

(i) For h = 2, . . . , k + 1, fh(t) = t(
h+1
2 )−1

(t−h)
4�h/2�(t−1)h(t−2)h−1···(t−h+1)2

gh(t).
(ii) For 1 ≤ k ≤ 6, gk(t) > 0 for all t ≥ k. Moreover, g7(8) > 0.

Proof. The proof for (i) is by induction on k. For (ii), setting Gk(t) := gk(t+k),
one has to show that Gk(t) > 0 for t ≥ 0, k ≤ 6. This follows from the fact that
G2(t) = 4 + 3t, G3(t) = 7 + 7t + 2t2, G4(t) = 64 + 68t + 30t2 + 5t3, G5(t) =
167+165t+84t2 +25t3 +3t4, G6(t) = 1776+1296t+540t2 +248t3 +70t4 +7t5.
Moreover, g7(8) = 1024. 
�

We can now conclude the proof of Theorem 1. Consider 1 ≤ r ≤ min(α(G), 6)
and t ≥ r + 1. We show that (33) holds using Corollary 2 and Lemma 6. First
note that detCh(t) = fh(t) for h = 1, 2 (direct verification). Let k ∈ {1, . . . , r}.
If k = 1, 2, then det Ck(t) > 0. Assume k ≥ 3 and Ck−1(t) � 0. By Corollary
2, det C1(t), . . . ,det Ck(t) are related via (39); that is, detCh(t) = fh(t) for
h = 1, . . . , k. We now deduce from Lemma 6 that detCk(t) > 0. This shows that
Cr(t) � 0 for t ≥ r + 1, which concludes the proof of Theorem 1.
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Let us now conclude the proof of Theorem 2 in the case when α(G) = 8.
We have to show that the matrix M = t(I + AG) − J from (18) with t :=
α(G) = 8 belongs to K(7)

n . We use the same argument as in the proof of Theo-
rem 1. Thus we are left with the task of proving that detC1(t), . . . ,det C7(t) >
0 for t = 8. This follows from the assertions g1(8), . . . , g6(8), g7(8) > 0 in
Lemma 6.

Note that the same argument cannot be used for proving Conjecture 1 in the
case α(G) = 9, since g1(9), . . . , g6(9) > 0 while g7(9) < 0 which implies that the
matrix C7(9) is not positive semidefinite.

4 Proof of Theorem 3

Obviously, las(1) = ϑ(0)(G). In view of (14), we have to show that las(r) ≤
ϑ̃(r−1)(G) for any positive integer r. For this, let x ∈ R

P2r(V ) be feasible for (1),
i.e., x∅ = 1, xI ≥ 0 (|I| = r +1), xij = 0 (ij ∈ E), and Mr(x) � 0. Then, xI = 0
for any I ∈ P2r(V ) containing an edge. We may assume that

∑n
i=1 xi > 0. For

p = 1, . . . , r + 1, define

�p :=
∑

β∈I(n,p−1)

(p − 1)!
β!

xS(β).

Then, �1 = 1, �p ≥ �2 =
∑n

i=1 xi > 0 for p ≥ 2. For p = 1, . . . , r, define
y = (yδ)δ∈I(n,2p+2) as follows: yδ = 0 if Sodd(δ) �= ∅, yδ := 1

�p
xS(δ) otherwise

(then |S(δ)| ≤ p + 1 ≤ r + 1).

Lemma 7. Np+1(y) � 0.

Proof. For I ⊆ V , set OI := {β ∈ I(n, p + 1) | Sodd(β) = I} and NI :=
(yβ+β′)β,β′∈OI

. Then, Np+1(y) is a block diagonal matrix with the matrices NI

(I ⊆ V ) as diagonal blocks. As �pNI = (xS(β)∪S(β′))β,β′∈OI
, NI � 0 since it is ob-

tained from a principal submatrix of Mr(x) by duplicating certain rows/columns
(unless |I| = r + 1 in which case NI is the 1 × 1 matrix with entry x|I| ≥ 0,
implying again NI � 0). 
�

Therefore, the matrix Z(p) := C(y) =
∑

γ∈I(n,p−1)
(p−1)!

γ! Nγ(y) belongs to

the cone C(p−1)
n . Moreover, Z(p)ij = 0 if ij ∈ E. Define the matrix

Z̃(p) :=

⎛

⎜
⎜
⎝

1 Z(p)11 . . . Z(p)nn

Z(p)11
... Z(p)

Z(p)nn

⎞

⎟
⎟
⎠ . (41)
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Lemma 8. Z̃(p) � 0.

Proof. The matrix:

�pZ̃(p) =
∑

γ∈I(n,p−1)

(p − 1)!
γ!

⎛

⎜
⎜
⎝

xS(γ) y2γ+4e1 . . . y2γ+4en

y2γ+4e1

... (y2γ+2ej+2ek
)n
j,k=1

y2γ+4en

⎞

⎟
⎟
⎠

=
∑

γ∈I(n,p−1)

(p − 1)!
γ!

⎛

⎜
⎜
⎜
⎝

xS(γ) xS(γ+e1) . . . xS(γ+en)

xS(γ+e1)

... (xS(γ+ej+ek))n
j,k=1

xS(γ+en)

⎞

⎟
⎟
⎟
⎠

is positive semidefinite, since the matrices in the above summation are principal
submatrices of Mr(x). 
�

Lemma 9.
∑n

i,j=1 Z(p)ij = �p+2
�p

and
∑n

i=1 Z(p)ii = �p+1
�p

.

Proof. Direct verification. 
�
Lemma 10. �p+2

�p+1
≥ �p+1

�p
.

Proof. By Lemma 8, Z̃(p) � 0, implying Z(p) − diag(Z(p))diag(Z(p))T � 0.
Therefore, eT (Z(p) − diag(Z(p))diag(Z(p))T )e ≥ 0, yielding

∑n
i,j=1 Z(p)ij ≥

(
∑n

i=1 Z(p)ii)2. The result now follows using Lemma 9. 
�

From Lemmas 9 and 10, we deduce that
∑n

i=1 Z(r)ii = �r+1
�r

≥ �2
�1

=
∑n

i=1 xi.
As the matrix Z(r) is feasible for the program (13) defining the parameter
ϑ̃(r)(G), this shows that ϑ̃(r)(G) ≥ ∑n

i=1 xi and thus ϑ̃(r)(G) ≥ las(r)(G), con-
cluding the proof of Theorem 3.
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